- Goodness of fit: df = #cells of table 1 (C-1 for cells arranged in a row).
- Homogeneity-Independence: df = (R-1)(C-1). Analyzed the same.
- Homogeneity is when "row counts are sampled separately."
- Chi-Square Statistic is always calculated $\sum_{\text{cells of a table of counts}} \frac{(\text{obs} \exp)^2}{\exp} \ge 0.$

■ Significance level (P-value) = probability of getting chi-square statistic that is *at least as large as your data gave* if the null hpothesis is correct.

■ Using a chi-square table:

$$\begin{array}{c} P - value \\ 0.0145 \end{array} \nearrow$$

30 49.34 Prob(chi-sq with df 30 > 49.34) = 0.0145

- Require all expected counts ≥ 5 . Not required of observed counts!
- Can *merge cells* to achieve ≥ 5 requirement.
- Can add independent chi-square statistics to combine experimental results. Add df to get the applicable df for the combined data.

■ Remember: If you choose to "reject H_0 whenever P < 0.001" then your type I error probability is 0.001. That is, if H_0 is true then you will "reject H_0 " with probability 0.001 (error of type I).

• Chance of error of type II $\rightarrow 0$ with lots of data. That is, if H_0 is false you are nearly certain to reject H_0 with enough data.

Goodness of fit example: Is the coin fair? Fit example: Is the coin fair? Suppose we find 63 heads in 100 tosses? $H_1: p \neq 0.5$ First, $W \in S$ $First, W \in S$ Fir

$$H_0: p = 0.5$$
 $H_1: p \neq 0.5$
Data : 63 heads in 100 tosses.

$$\hat{p} = \frac{63}{100} = 0.63, \qquad \hat{q} = 1 - \hat{p} = \frac{37}{100} = 0.37$$

test statistic =
$$\frac{\hat{p} - p_0}{\sqrt{\frac{p_0 g_0}{n}}} \sim Z$$
 if H₀ is true (*i.e.* $p = 0.5$)

Reject if test statistic is too far from 0(2 - sided test).

Test statistic evaluates to $\frac{\hat{p} - p_0}{\sqrt{\frac{p_0 \, g_0}{n}}} = \frac{0.63 - 0.5}{\sqrt{\frac{0.5 \times 0.5}{100}}} = 2.60.$ $\frac{2 - 5 / \frac{p_0 \, g_0}{N}}{A (T + N)^{0.1/25/5}} \sqrt{\frac{p_0 \, g_0}{n}} = \frac{\sqrt{0.5 \times 0.5}}{\sqrt{\frac{0.5 \times 0.5}{100}}}$ $P - \text{value} = 2 P (Z > 2.60) = 2 (1 - 0.9953) = 0.0094. \approx .01 (1/\beta)$ $\frac{VNDER}{SPNND}$ \geq 63 heads. The data does exhibit *a* rarely seen departure from 0.5.

a. The P-value, using the z-test of chapter 19, is 0.0094.b. This closely agrees with the P-value 0.0093 found using the chi-square test of Chapter 26.

Either the coin is fair and this data is "luck of the draw bad" or the coin is not fair. We may never know which.

If students choose with equal probability, a chi-square at least as large as our 17.8 would only be seen with probability 0.0005. Which is it? We may never know for sure.

Is full moon statistically related to incidence of crime?

- a. Some expected counts are less than 5.
- b. Possible "confounding factors." l,g. *mooN PHASES MIGHT (DINCIDE WITH HOLDAYS* R'' GAMENIGHTS," AND THUS WITH CRIMES.

	FULL MOON	NOT FULL		
violent	2	2	4	merge with abuse
property drugs abuse other 66	$ \begin{array}{c} 17 \\ 27 \\ 11+2 = /3 \\ 9 \\ 66 \\ 79 \\ 8 \\ 18. \end{array} $	$ \begin{array}{r} 21\\ 19\\ 14+2 = /6\\ 6\\ 62\\ 1739 17.0\\ \end{array} $	38 46 25+4 15 138 725	EZ9 Ment
expe	ected 13.	20.6 8696 13.0 7391 6.73	667 029 913	$ \begin{pmatrix} (K-1)(2-1) \\ df = (4-1)(2-1) = 3 \\ \end{pmatrix} $
chi – squ	are statistic = 🛛	$\sum \text{cells} \frac{(\text{obs} - x)}{\text{ex}}$	exp) ² p	= 3.528 (merged) INDEPENDENCE-
P = 0.317	7 (no evidence ac	ainst the hoot	hesis	of homogeneity

Merge cells to meet the "minimum of 5" requirement.

P = 0.317 (no evidence against the hpothesis of homogeneity) Seems that we don't have to worry over confounding factors.

	Hepatitis C	No Hepatitis C	2			
tatoo parlor	17	35	52			
tatoo no parlor	8	53	61			
no tatoo	22	491	513			
	47	579	626			
EXPECTED						
	Hepatitis C	No Hepatitis C				
tatoo parlor	52 47 / 626	Not 52 579 / 626	52			
_	(3.904) <	- <u>う</u> く (48.096)				
tatoo no parlor	61 47 / 626	/ 61 579 / 626	61			
	(4.580) 🛹	(56.420)				
no tatoo	61 513 / 626	513 579 / 626	513			
	(38.516)	(474.484)				
	47	579	626			
chi – square statistic = $\sum_{\text{cells}} \frac{(\text{obs} - \text{exp})^2}{\text{exp}} = 57.91$						
P << 0.0001						
table of chi -	- sq : df	0.0001				
	(3-1)(2-1) = 2	2 18.42				

But wait! Are all of the expected counts at least 5? 10-

Independence/Homogeneity

