Chapter 26

■ Goodness of fit: $\mathrm{df}=$ \#cells of table $-1(\mathrm{C}-1$ for cells arranged in a row $)$.

- Homogeneity-Independence: $\mathrm{df}=(\mathrm{R}-1)(\mathrm{C}-1)$. Analyzed the same.

■ Homogeneity is when "row counts are sampled separately."
■ Chi-Square Statistic is always calculated $\sum_{\text {cells of a table of counts }} \frac{(\text { obs }-\exp)^{2}}{\exp } \geq 0$.

- Significance level (P -value) $=$ probability of getting chi-square statistic that is at least as large as your data gave if the null hpothesis is correct.
■ Using a chi-square table:

df \quad| P-value |
| :--- |
| 0.0145 |

$30 \quad 49.34 \quad$ Prob $($ chi-sq with df $30>49.34)=0.0145$

- Require all expected counts ≥ 5. Not required of observed counts!
- Can merge cells to achieve ≥ 5 requirement.
- Can add independent chi-square statistics to combine experimental results.

Add df to get the applicable df for the combined data.
■ Remember: If you choose to "reject H_{0} whenever $\mathrm{P}<0.001$ " then your type I error probability is 0.001 . That is, if H_{0} is true then you will "reject H_{0} " with probability 0.001 (error of type I).

■ Chance of error of type II $\rightarrow 0$ with lots of data. That is, if H_{0} is false you are nearly certain to reject H_{0} with enough data.

Goodness of fit example: Is the coin fair?

 Suppose we find 63 heads in $\mathbf{1 0 0}$ tosses?$\mathrm{H}_{0}: p=0.5 \quad \mathrm{H}_{1}: p \neq 0.5$
Data : 63 heads in 100 tosses.
$\hat{p}=\frac{63}{100}=0.63, \quad \hat{q}=1-\hat{p}=\frac{37}{100}=0.37$
test statistic $=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} 8_{0}}{n}}} \sim \mathrm{Z}$ if H_{0} is true (i.e. $p=0.5$)
Reject if test statistic is too far from $0(\mathbf{2}$ - sided test $)$.

$P-$ value $=2 P(Z>2.60)=2(1-0.9953)=0.0094 \approx .01$ (/ $/ \mathrm{P})$
Conclusion : It is around 1% likely that a fair coin would produce either ≤ 37 or
≥ 63 heads. The data does exhibit a rarely seen departure from 0.5 .

Same data as above ($\mathbf{P}=0.0094$) but analyzed by chi-square

a. The P -value, using the z -test of chapter 19 , is 0.0094 .
b. This closely agrees with the P -value 0.0093 found using the chi-square test of Chapter 26.
Either the coin is fair and this data is "luck of the draw bad" or the coin is not fair. We may never know which.

Can students act like equal probability selectors?
Apply chi-square goodness of fit to their choice-data.
H0: choices $1,2,3,4$ are equally likely.
H1: not equally likely

$$
\begin{array}{llll}
& 1 & 2 & 3 \\
& \frac{55}{4} & \frac{55}{4} & \frac{55}{4} \\
\text { expected } & \frac{5}{4} \\
\text { observed } & 8 & 27 & 12
\end{array}
$$

observed
$4 \quad \begin{aligned} & 10: 2 \\ & \frac{55}{4} \text { total } 55\end{aligned}$

8 total 55

$$
\begin{aligned}
& \text { chi-square statistic }=\sum_{\text {cells }} \frac{(\text { obs }-\exp)^{2}}{\exp }=17.8 \\
& \frac{(\mathbf{8}-55 / 4)^{2}}{55 / 4}+\frac{(\mathbf{2 7 - 5 5 / 4})^{2}}{55 / 4}+\frac{(\mathbf{1 2 - 5 5 / 4})^{2}}{55 / 4}+\frac{(8-55 / 4)^{2}}{55 / 4}=\mathbf{1 7 . 8}
\end{aligned}
$$

$$
\mathrm{DF}=\mathrm{C}-1=4-1=3 \quad \mathrm{P}=0.0005
$$

$$
\text { table of chi-sq: } \quad \mathrm{df}
$$

$$
3
$$

If students choose with equal probability, a chi-square at least as large as our 17.8 would only be seen with probability 0.0005 . Which is it? We may never know for sure.

Is full moon statistically related to incidence of crime?

a. Some expected counts are less than 5.
b. Possible "confounding factors."
leg. MOON PHASES MIGHP CINCIDE WITH HOLIDNYS OR" GAME NIGHTS," AND THUS WITH CRIMES.

Merge cells to meet the "minimum of 5 " requirement.

But wait! Are all of the expected counts at least 5? No-

Independence/Homogeneity

OBSERVED

$\left.\left.\begin{array}{ccc}\text { Hepatitis C } & \text { No Hepatitis C } \\ 17\} \text { 25 } & 35 \\ 8\} \text { 25 } & 53\end{array}\right\} 88 \quad \mathbf{6 1}\right\} / / 3$

EXPECTED
Hepatitis C No Hepatitis C
no dato $\quad \frac{47513}{626}=38.516 \frac{579513}{626}=474.484$
CHECK THAD MARGINAL TOTALS OF "EXPECTED" TABLE
ARE THE SAME AS THE ONES FOR"OBSERVED"TABLE.
chi-square statistic $\log , \frac{47113}{626}+\frac{47513}{626}=\frac{47626}{626}=47$
P

Are all of the expected counts at least $5 ?$ VT ES, $P<, 0001$, RARE.

